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THE THEORY OF ROTATIONALLY

SYMMETRIC PLASTIC SHELLS

By Philip G. Hodge, Jr.

ABSTRACT

The defining equations for a rigid/perfectly-plastic shell

are derived from basic principles. On the basis of a single geo-

metric assumption for the velocity field, generalized strain rates

and stresses are defined and equilibrium relations deduced. Shell

yield conditions and the flow law are discussed in general terms and

then specifically for piecewise linear yield conditions.

Preceding the general shell problem, the theory of beams

under bending and axial forces is discussed to give a general in-

sight into plastic structural behavior. The paper closes with an

application to cylindrical shells and a discussion of areas for future

development.



1. INTRODUCTION

For historical reasons, the structural theory of shells has, until

recently, been exclusively an elastic theory. Thus, in the usual develop-

ment, the assumptions of a linear theory of elasticity and of shell theory

have been introduced at the outset, and equations have been derived which

apparently depend upon both of these sets of assumptions. As a result,

it is desirable to begin an inelastic theory of shells by a consideration of

basic principles. In the interests of possible other inelastic theories, the

basic kinematic and static equations of shell theory have been derived in

aec. 3r bya-,metho-d'Wtd1'S dpn~i Tayprtua oshf

equations of the material. The final results will, of course, come as

no surprise to those familar with classical elastic shell theory, but it is

not obvious that the full extent of their generality has always been appreci-

ated previously.

Although aiming for maximum generality of material assumptions,

it has seemed desirable to limit the treatment here to a rotationally symmetri

shell under rotationally symmetric loading with no torque. This limitation

considerably simplifies the mathematical presentation of the fundamental

concepts presented, although the concepts themselves are evidently appli-

cable to the more general case of arbitrary shells under arbitrary loadings.

Further justification lies in the fact that very few problems have been solved

to date which do not fall into the rotationally symmetric catagory. For

*The only two exceptions known to the author are a paper by Fialkow [ 1]
in which bounds are found on a cylindrical roof, and one by Hodge and
Panarelli [ 2] concerned with a cylindrical shell under pressure, end load,
and torque. (Numbers in brackets refer to the list of references collected at
the end of the paper).
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brevity of notation, we shall use the unmodified term "shell" to refer to

the fully rotationally symmetric catagory defined above.

By way of introduction to the shell problem, we present in

Sec. Z a development of the general and plastic theory of beams under

combined bending and axial force which was first formulated by Onat

and Prager [ 3, 4] . In this much simpler case, we can show in some

detail how a structural theory is derived from a three-dimensional theory.

A single kinematical assumption is made concerning the deformation or

velocity field. Using this assumption and the principle of virtual work,

one is led naturally to the definition of generalized strain rates and

K enier Lallzed'stresses. -As first'pitd oti!~Y-Pt'1 ebg -f t - t0 __en- m

of limit analysis apply immediately to such variables; Hodge [6, 7] has

shown that the general theory of elasticity and various models of plasti-

city can all be conveniently developed in terms of generalized variables.

When the constitutive equations of a rigid/perfectly-plastic

material are inserted into the beam problem, the concept and principal

properties of the yield curve and plastic flow law are all derived in a

simple manner. That these properties are all valid for any number of

generalized strain-rate and stress variables is certainly plausible. Al-

though they can all be proved based upon Drucker's "stability postulate"

[ 8, 9] , it has seemed more in keeping with the spirit of the present paper

to assume them and develop from them the specific plastic constitutive

equations for the shell problem, as is done in Sec. 4.

The derivation of yield conditions for plastic shells has

been the subject of numerous papers. Although, the resulting yield

conditions differ greatly in mathematical complexity, the theorems of

* An account of most of these, together with original source references,
can be found in [ 10] .
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limit analysis can be invoked to bound their differences in predictions.

Since very little direct experimental evidence is available upon which

to base a reasonable choice, it has seemed advisable to concentrate

attention upon the mathematically simple class of piecewise-linear

yield conditions in Sec. 5. Not only does this greatly simplify the

solution of problems, but, as is shown, the results can be used to

bound the yield-point loads of any conceivable material yield condition.

The primary purpose of the present paper is to survey the

theory of plastic shells, rather than to give a catalogue of problem

solutions. However, in the interest of providing a typical application

which is mathematically simple, we have included an example concerned

with a cylindrical shell in Sec. 6.

The treatment in Sections 4 through 6 was intentionally res-

tricted to an idealized rigid/perfectly-plastic material. The final section

of the paper discusses the reasons for this litnitation and indicates quali-

tatively some possible generalizations.



2. BEAM THEORY

As a prototype of shell theory, we shall first examine the

much simpler case of an initially straight beam under the influence of

bending moment M and direct stress N. We shall make the initial

assumption that plane normal sections remain inextensible, plane, and

normal to the centroidal aris. At any cross section x, then the velo-

city field is

ux=V- UW y=0 u =W (2.1)

wbtro Y_ -and_ W, ýaafnais Q,

The strain-rate tensor field associated with (2. 1) has the

axial strain as its only non-vanishing component:

I If
=V - zW (2.2)x

so that the total internal rate of work reduces to

L
Wit= I ~i dV = I I a, (V -zW") dA dx (2.3)

nt y ij i 0 A

Since V and W depend only on x, we may rewrite (2. 3) in the form

L to
W In (NV -MW ) dx (2.4)mnt 0

where

N= a o dA M =1a o zdA (2.5)
Ax A x

Since N and M are the stress resultants for direct stress

and bending moments, respectively, they are an obvious choice for

generalized stresses for the beam problem. It then follows from Prager

4



(51 that the generalized strain rate should be

e=V K=-W (2.6)

whence we can rewrite (2. 2) in the form

E = e + z K (2.7)
x

An alternative form of (2. 4) is obtained by integrating it

twice by parts:

L, L
W -f(N V + M"W) dx + [NV + MDW- MWý]L (2.8)

0 0

The external rate of work may be written
LL

W =f PWdx + [IRV + 9W - MW' (2.9)
ext 0 0

where P is the applied normal load and R, S, and iI are, respectively,

the axial force, shear force, and bending moments applied at the beam

ends.

The principle of virtual work rate states that the internal and

external work rates must be equal for all sufficiently continuous velocity

fields V, W. Obviously this condition requires

e II

NP=0 M + P=O 0<x<L

(2.10)

N=N M =S M=IM x=O,x=L

The development thus far is independent of any material property.

Since only the axial force a enters in the definition of the generalized
x

stresses, we shall assume that it is the only stress to influence the mater-

ial behavior. In particular, for a rigid/perfectly-plastic material, the
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the yield behavior is fully characterized by the yield stress g.

If a = 00 at an element, the element may have any positive axialx

strain rate C ; if a = it may have any negative axial strain rate

rate; if "ff0 <ax <q0 the element must remain rigid; stress states

la, I>0 are not tolerated. In other words the strain rate can bex0
non-zero only if a = v0 for positive ex and a= - cr0 for negative Cx

Since (2. 7) describes a strain rate which is linear in ze there

will be a particular value z = C H at which C = 0. For all z on one sidex

t H, E will be positive and hence a = o, whereas on the other
x x

side# C will be, ne ~a~e and hog 6 - qo, .A"sum irjJr

ness that K is positive, we see that the strain-rate and stress

distributions must have one of the forms shown in Fig. 1. Therefore,

it follows from (2. 5), (2. 6), and Fig. 1 that

H
N- = 0 f B(z) dz = 0  M = 0

-H

e/H>K >0 for (2<- 1 (Zl1a)

H
N= 0 [ " f B(z) dz + f B(z) dzI

-H tH

C H H
M =Or[ -f zB(z)dz + f zB(z)dz]

-H H

e/(-CH) Ký-0 for - 1-<--- (2.llb)

H
N=-cT0 f B (z) dz=-N0 M=0

-H

-e/H ZKZ0 for 1: C (2. 11c)

where B(z) is the width of the section.
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Equation (2. lib) defines a curve in the N, M plane. If we consider

the case K< 0, - 1 :5 C Z 1, we obtain the image in the origin of (2.11b).

Evidently the sum of these two curves is closed. This resulting closed

curve is called the yield curve. If the stress point N, M is on the yield

curve, plastic flow can take place; if the stress point is inside the curve,

the section is rigid; stress points outside of the yield curve are not tolorated.

Figure 2 shows the resulting yield curve for a rectangular section.

It follows from (2. lib) that

dM/dN = C H. (2 12)

whence the yield curve is evyertly gonwv, FurU=, since

K/e = -- 1/• H (2.13)

the "strain-rate vector" with components (e, K) is normal to the yield

curve at the stress point 9.

Equations (2. Ila) give the single stress point (N0 , 0) but permit

a variety of strain-rate vectors. If • tends to -I with positive K, then

it follows from (2. 13) that

lim (e, K) = A (1, l/H) (2. 14a)

where XI is an arbitrary positive scalar. Similarly, if K is negative,

lim (e, K) A2. (1, - 1/H) (2.14b)

where A 2 2:0. From the inequality (2. 1la) on e/H and K, together with the

corresponding inequality

e/H a, - K 2t 0



8

for negative K, we see that at e = - 1, e and K are restricted only

by

e/H - [KI>- (2.15)

Finally, it is obvious that the sum of the two vectors (2.14) will satisfy

(2.15) for any non-negative choice of 11 and X. Typical strain-rate

vectors are shown in Fig. 2 for a regular point B governed by (2.11b)

and for a singular point A governed by (2.1 la).

For the beam problem considered here, we have started with a

simple geometrical assumption and with the tensile behavior of the material.

We av~ Uien evehpd'!~ e~flhrtm onditions, Mhe cofnvexilfy of ihe-

yield curve, the normality of the strain-rate vector of a regular point,

and the behavior of the strain-rate vector at a singular point. It can be

shown that these concepts are all carried over to the more general problem

of rotationally symmetric plastic shells. We shall use these facts in the

next two sections.



3. BASIC EQUATIONS OF SHELL THEORY

The theory of elastic shells has been thoroughly studied, whereas

investigations of inelastic shells are quite recent. As a result, it is

not always clear which aspects of elastic shell theory are dependent upon

the elastic constitutive equations and which are equally valid for other

materials. Therefore, we shall begin this discussion by deriving the

fundamental rotationally symmetric shell equations in a manner which makes

no reference to any constitutive equations. The results will thus be appli-

cable to shells of any material and hence, in particular, to a rigid/perfectly-

plastic material.

A single kinematic assumption is made concerning the type of de-

formation which the shell undergoes, namely:

Initially straight normals to

the undeformed middle surface

remain straight, inextensible, (3. 1)

and normal to the deformed

middle surface.

The degree of validity of this assumption as applied to a real physical struc-

ture determines the validity of calling the.structure a shell in the sense used

in this paper. The validity of (3. 1) cannot be checked internally on the basis

of shell theory but must be done on the basis of complete three-dimensional

solutions, experimental evidence, and/or sound engineering judgement. It is

certainly conceivable that its validity should depend not only on the geometrical

parameters such as thickness and radii of curvature, but on the type of mater-

ial being considered, i. e., elastic, plastic, etc.

9
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A detailed discussion of the situations under which (3. 1) is a

reasonable approximation to reality would be beyond the scope of the

present paper, even if it could be done in any generality. Therefore, in

the remainder of the present development we shall assume (3. 1) and in-

vestigate its consequences.

The method of attack is similar to that used in the previous section.

We shall first find the expressions for linear strain-rate components

for a general deformation of a shell. Next we particularize these strain-

rate velocity relations in accord with assumption (3. 1). The internal

work rate associated with an arbitrary displacement field subject to (3. 1)

is then computed and shown to naturally suggest the generalized strain-

rate variables appropriate to the rotationally. symmetric shell problem.

Finally, the principle of virtual work is invoked to define the generalized

stress variables and to obtain'the equilibrium equations which they must

satisfy.

We consider an arbitrary longitudinal plane of the shell and let 0

be an arbit rary point on the center line, Fi g. 3. The coordinate 4 is

defined as the angle between the axis and a normal to the center line through

0; the coordinate t is measured inward along the normal from the center

line. Let points P and R have the same 0 coordinate as 0 with

coordinates t and 9 + At , respectively; let Q have coordinates

0 + A 0 and • ,all as shown in Fig. 3.

It is now convenient to introduce a set of Cartesian coordinates

r, z in the plane of Fig. 3. The following vectors may be readily identified:
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P0 u(flI~ -C )A (cos o, sin 0)
_.4 (3.2)

PR A (-sin•, cos•)

Consider next a small vector velocity field u . If u and uO

are the components of u in the t and 0 directions, then u may be re-

ferred to r and z components by

u = u (-sin ', cos +•O) (cos 0. sin 0) (3.3)

I ! ,

Let P, Q, and R denote the respective positions of P, Q, and R after

the displacement. Then
to -WO -p.* - - --I I I I

P Q = PQ +QQ - PP = PQ +u(Q) -U (P)

hence, in view of Eqs. (3. 2) and (3. 3)

(R n (cos'P, sin )+ (u +u )(-sin 0, cos ')]

(3.4)

P R =A4 ((I+ii)(-sin0', cos )+ d(coso. sin')]

Here we have regarded A ' and A C as infinitesimals and have denoted

differentiation with respect to 0 and C by a prime and a dot, respectively.

If 'u/RI [I u'/RI* and I h I are all small compared to unity we can

easily deduce from (3.4) and (3. 2) that

I P0 = !R-- U
I I (RI - 0+ R n

I PRI =A4 (l+ tn) (3.5)*

PQ P PR =A 'AC (Ri.- ) (0+ R I

I PQI =(R- i )A 0 IPRI = A4 PQ. PR=O



12

Extensional strain rate is defined as the rate of change in length

per unit length of a line element. Therefore the extensional strain rate

of an element in the direction of r is

S PR! I :APR1 = fi (3.6a)

n IPR I

and, in similar fashion

SIPQ I -IPQI u U(3.6b)

The- exremnst-al su~a•n •ate t Th•- •r m 16&aI "ectlfi s lle ra&t..

increase in the circumference of a circle through P divided by the original

circumference. Since the circumference is proportional to the radius, we

may equally well use the r components of the vectors CP and CP to

define

(CPý) - (CP) -O uc cO - u sin (3.6c)
E (C7') r (R2 - sin

The shear strain rate is defined as the rate of' change in an

initially right angle. In view of the restriction to rotational symmetry

'YnO = 1F 0 0 0 (3.6d)

whereas the remaining shear strain rate is

u uiPQ"* P R u + Un
T I P'R I Ih + n (3. 6 e)Yn PQIRIR 1 -
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Equations (3. 6) give the strain rate components at any point in

the shell for an arbitrary displacement field. We now introduce the

assumption (3. 1). If V and V• represent the velocities of a point 0

on the center line, then it follows from Fig. 4 that at P

U =V V ...L- (V, + V,) (3.7)

n n u.-V R1  n

Substituting (3. 7) into (3. 6) we find that for the particular velocity

field being considered,

C = VnG = 70 98 =n =0

V cot V cV V +V'CO n . cot 0 n (3.8)}

Vs-O v•-n 4 V ,)
4' - R (V.+Vl-

The internal rate of work associated with a rotationally symmetric

shell may be written

R~ 2ir

Wint =• Wint(Ri 0 ) sin Od~dtdO (3.9)

S-H 0

where the shell extends from 4 = • to 4 =@ and is of thickness 2H; here

Wint = 0n C +• %0 + of ' C 4 +'T ' V ' T 907 +0n7 9

it n n 0 0 0 "nO fnO + •7 0 V ." On

We substitute the particular strain rate field (3. 8) into (3. 9) and note that

VnV V R1 fand R, are independent of j and 0 to write the resulting ex-

pression in the form
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Wn - V cot I-= H Z1 R d

Wmt TZ 1R 0d-H 0

+ Lv,'.vn I ' " "a o - dOdt
-H 0 

PZ

Scot ( dO d

L Z RzI 0~ tHO r Ri d

+ R• 7R7IIP

-H 0

(3. 10)

The factors in the first bracket of each term of (3. 10) are chosen as

our generalized strain rates. They may be given simple physical interpreta-

tions as extension rates and approximate curvature rates of the middle surface.

Thus

e -V% cot V- )HN e( =V' - V)/R

K9  ot ( VVo+VI) l ( V'+vn'

(3. Ila)

As first pointed out by Prager [51 , generalized stresses and strain

rates must be chosen so that the internal work rate is proportional to their

scalar product. Therefore, we define the second bracketed factor of each

term as a generalized stress:
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-H H 2 -

H(3. Hib)

els R~d• M•= 4 p,

NM0 = acr 0 tN q dt

-H -H

where we have assumed for simplicity that the stress distribution also

is rotationally symmetric.

We observe that (3. 11) are precisely the total force per unit length

and total moment per unit length about the center line which are trans-

miffe-d a'cros-s an eeet"fi 1e1.Teeoe h d~eftrlff'ns .hl

are in agreement with the usual definitions of stress resultants.

External work may be done on the shell by surface loads applied

at • =+ H, by edge loads applied at * = / and 0 =Ot, or by body

forces. We denote by T and T the force per unit area components trans-
n

mitted across a surface • - const. from greater to lesser values of •

by S and S similar forces across a surface * = const. p and by F andn 0n
F the body force per unit volume components. Then the external rate at

which work is done during an arbitrary symmetric deformation is

2- H

W ([ (Su +S uA (R - ) sin Odf
ext JLI.Jnn hr Z0 -H

(3. 12)

H+ (% (~ +T u,0) (Rh-4) (R,2-t'sin~db]H

H-H

-H (Fu + F (RI - ) (R2 4 sin OC1 dj dOnn 0U
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We substitute the particular velocity field (3. 7) into (3. 12) and re-

arrange the terms to obtain

w H s d) + HS Q

n dn R2 
s

-H

,8 + " H R --H -H d Rsn)

HH

T R +L R I -H -H

H HR t R2 -H R, R

(3. 13)

Just as the factors in (3. 10) were recognized as resultant internal forces

and moments, so the factors in parentheses in (3. 13) may be recognized

as resultant applied forces and couples. Thus we are led to define bound-

ary force s

H -H

-- H(3.14)

-H--

Jsat the edges fc = and (3 =. of the shell, and distributed loads and

as couple by

ar-ore
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•'I R,: -R - -H R--d
FRiRz

P40 ft OR, -j- .. +5 FO-Rd
T H -H-CR -

R, -- RZ -4- 4- R-Hd

(3. 14b)

for 0< 0<t. The definitions (3. 14) are consistent with the usual

physically based definitions and include the possibility of a couple

CO being distributed over the surface.

We next set the internal rate of work (3. 10) equal to the external

rate of work (3. 13). using the definitions (3. 11) and (3. 14). Integrat-

ing the term involving Mo by parts we can write the resulting equation

in the form

S(Wex . Wit- (-R1NO cos Ob+ Rtz P4sinO) - VoI'RNin

+ V n (R1 N. sin 0 + Fý Np sin + R, R P sin •

eVI

R4 coso + (F M0 sin) + R- R C o

+ (V 1 ~+ V.0R,+ (MO - It. Rsin 01 0

(3. 15)
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The group of terms in the bracket in (3. 15) suggest the definition of a

quantity S by

R1 R2 S sin 0 NMsin ' - R1 M. coso + R ý 2 C sin* (3.16)

whence a further integration by parts of (3. 15) leads to

•V [ (R N. sin - R1 N9 CosS-P 2 S sinS+ RRZ P Psin]

+V V(r 2 ssin' + Ri No sins + No sin0+. RiR P•n sin 0] dO

(3.17)

If Eq. (3.17) is to be valid for all sufficiently continuous velocity functions

Vo and V , then the two factors in square brackets on the left-hand side
n

must vanish indentically in 4 and the three parenthentical factors on the

right-hand side must vanish at the shell edges. Thus

(R 2 N sin R,'- N. cos -R 2  sin + R1 2• P sin- 00 1 0 (3, Is8)

(U S sin0)' + R N9 sinS + .R NSsin +R1 HR P sins = o

forall 0, andat O=aand A '=

S=9No ' =N4'  MO4'IO (3.19)

Equations (3.16) and (3. 18) are the familiar equations of equilibrium

for a rotationally symmetric shell (in the usual case Co = 0), and (3.19)

express the fact that shear force, normal direct stress, and normal

bending moment must each be continuous at the boundary.
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In the following, it will prove convenient to deal exclusively

with dimensionless quantities. To this end we denote by N0 the

maximum direct stress which the shell can withstand in uniaxial tension

and by M.4 the maximum uniaxial bending moment and define

n . N9 No no NOINo

S- mM 9  Mo m10 M 0  (3. Z0a)

K 90 -. M01NO)K K p (MI/NO)K,

Further we let A represent a typical dimension of the shell and define

r R/A rI RI/A r2  R•/A
=Vn/A v h -M/AN0

Pn fpA/N0  PO A/No f SINO

wint = wint 2- r NoA2 we W• /2wNOA2 • Z
w It ext/wNA w ex2,tIZN (3. 20b)

In terms of these dimensionless quantities, the generalized strain

rates and stresses (3. 11) become
v cot 0 - v v' -n

eer2 M= rl (3.2la)

v v'
"K h cot 0h =n 1C) . !

H"2r7, ri r I

-H -HH r" -C/A d SH rz'2 /A
n. a" ri d• n. r2 d

_ _ _ _ 1I • _ __-•I

-H -H

(3. Zlb)
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and the equilibrium equations (3. 16) and (3. 18) (with C, z 0) may be

written

(rN)' - rlng cos - re + rrlP, a 0

(rs)I + rIno sin 0 + rn + rrlpn = 0 (3.22)

h [ (rrn!' - rlrr cos -rrls = 0

where

r= r 2 sin• (3.23)

is the dimensionless distance from the axis.



4. CONSTITUTIVE EQUATIONS OF

PLASTIC SHELL THEORY

The basic unknowns of shell theory are the four generalized

stresses n.. inot9me, mot the shear stress s, and the velocity

components vo and v . Since Eqs. (3. 16) and (3. 18) provide onlyn
three equations for the seven unknowns, it is necessary to provide

four more equations in these same unknowns which characterize

the particular shell material.

For a linear elastic material these constitutive equations are

trivally derived. Hooke's law is substituted into (3. 1 ib) to give general-

ized stresses in terms of material strains, and these latter are expressed

in terms of displacements by expressions analogous to (3.8). It is time-

saving to express the results in terms of generalized strains by utiliz-

ing the displacement form of (3. 2 la).

For the plastic material, it is necessary to first express the

yield condition in terms of the generalized stresses. For any assumed

form of the material yield condition, the shell yield condition can be

found, at least in theory. Assuming that H/Rl and H/R 2 are negligible

compared to unity, Onat and Prager [ II] have found the yield condition

for a uniform shell whose material satisfies the Tresca yield condition.

Similar treatments of the Mises yield condition applied to shell problems

have been carried out by Hodge and Panarelli [ 12, 2]. However, the

results are so complex as to have been relatively little used in the solution

of problems. Among the few complete solutions (as opposed to bounds

found by limit analysis) are those by Hopkins and Wang [ 13] for a

21
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flat plate, Hodge and Sawczuk [14] for a cylindrical shell. and Onat

and Lance [ 15, 16] for a nearly flat cone.

In view of the difficulty of obtaining complete solutions ac-

cording to the Tresca or Mises uniform shell yield conditions,

considerable interest has been expressed in the use of approximate

yield conditions. An approximate yield condition can be viewed in

either of two lights. On the one hand, by means of the Bounding

Surface Lemma [ 10] of limit analysis, it may be used to provide

upper and lower bounds on the yield-point load according to some

=are exact yieldzomdkimiOL Genexal-factars Ior thia aban

found by Hodge and Sankaranarayanan [ 17, 18] . Alternatively, one may

visualize an ideal shell made of a modified material such that the approxi-

mate yield condition for the real shell becomes the exact yield condition

for the ideal shell. If the material difference between the real and ideal

shell are not too great, then the behavior of the ideal shell should pro-

vide valuable information concerning the behavior of the real shell.

Further justification for the use of approximate yield conditions

for shells is derived from the fact that either the Tresca or Mises

material yield condition already represents an approximation to reality,

and hence it is misleading to speak of a shell yield condition based on

either of them as "e~xact".

Once the yield condition has been decided upon, it provides one

of the necessary four constitutive equations. The remaining equations

are obtained from the flow law. The plastic potential flow law was

first proposed by Mises [ 19] and later shown to be a consequence
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of Drucker's postulates for a stable material (8. 91 . In terms of

the generalized stresses and strains defined by (3.2 1), we may

represent the yield condition as a surface in a four-dimensional

generalized stress space in the form

f (no, n•, mn, m) = 1 (4. 1)

The flow law then states that the strain rate-vector

q = (e 9 . ept, K90 K) (4.2)

must be directed along the outward normal to the yield surface at

the stress point. Thus

q = A Vf (4.3)

where A is a non-negative scalar. Since X is unknown Eq. (4. 3)

is equivelent to three scalar equations in terms of the unknowns

no no, mo, m•, vo, vnt as required.

At some points of the yield surface, the normal may not be

uniquely defined. If the stress point is in a "crease" formed by the

intersection of two smooth surfaces

f I 1 f2 = 1 (4.4)

then the strain-rate vector can be any combination with non-negative

coefficients of the normals to the two surfaces forming the crease:

q A Vf +A 2 Vf2  (4.5)

Observe that in this case Eqs. (4. 4) for the yield condition provide two

constitutive equations; since X1 and X2 are now independent unknowns,

(4. 5) provides only the necessary two remaining equations.
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In degenerate cases the above reasoning may be generalized

to higher order intersections which result in more yield conditions

of the form (4.4) and more unknown A's in the flow law. However,

we observe that Eqs. (3.22) and (4. 4) provide five equations con-

taining only n. # no, m 9, mot and s as unknowns, and that the velocity

unknowns v and vo occur only in the two independent equations ofn

(4. 5). Therefore, any hypothesis which added to (4. 4) at the expense

of (4. 5) would generally lead to over-determined stresses and under-

determined velocities and hence be unsolvable.

'The a, an' [trsg result cnth ce o

a piecewise-linear yield surface. If (4. 1) represents a linear surface,

then Vf will be a constant. It follows that (3. 22) and (4. 1) will provide

four equations for five stress variables whereas (4. 3) will provide three

equations containing only vo and vn. Therefore, except possibly in

certain degenerate cases, if the yield condition is piecewise linear, the

constitutive equations must be of the form (4.4) and (4. 5).



5. PIECEWISE LINEAR YIELD CONDITIONS

Based upon previous work by Hill [ 20] and Ivlev [ 2 1]

Haythornthwaite [ 22] has shown that any material yield condition

may be conveniently bounded by two piecewise linear material yield

conditions when the only physical information is a single test measure-

ment. We consider a representation in principle stress space as

shown in Fig. 5 and suppose the point A to be a measured tensile

yield stress a . Following Haythornthwaite, we assume only that the

material is isotropic with equal tensile and compressive yield stresses,

that it satisfies DruckerIs stability postulate, [ 8, 91 , and that the

sharply defined rigid-perfectly plastic yield-point load represents

useful information. It follows that the yield surface must be convex

with symmetry every 30. Therefore, if the tensile yield stress

o0 is known, the yield surface must pass through point A in Fig. 5 and

must lie between the solid and dashed curves. The inner solid curve

is Tresca's [ 23] condition of maximum shearing stress

max[ Io'r 1 oq2 1, Ia2-ao31[, 1o'3-o1[]-o"0 (5.1)

whereas the outer dashed curve is Hill's [ 20] condition of maximum

reduced stress

max I.- (a + a +0•3)13 = 00 i=1,2,3 (5.2)

In the analysis of thin plates or shells where the state of stress

is approximately plane, the information in Fig. 5 may be represented

in a a•, a2 plane. For flat plates under bending, the yield relation be-

25
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tween principal bending moments is the same as that between principal

stresses, so that Haythornthwaite [ 22] was able to use the bounding

surface lemma to bound the yield-point load of a circular plate under

uniform pressure.

If both bending moments and direct stresses are present, as is

generally the case for curved shells, the yield surface will no longer

have the simple character it does in a ol, a. space. Rather, four stress

dimensions will be required, and, due to the differences in integration

generally be non-linear even if the material yield condition is piecewise

linear.

One method of regaining a piecewise-linear problem is to

approximate the uniform shell by an idealized sandwich one. An idealized

sandwich shell consists of two sheets each of thickness t', separated

by a core of thickness h'. The sheets each have a tensile yield stress

or0' and carry no shear; the core has no in-plane strength but is sufficient-

ly strong in transverse shear to maintain separation of the sheets. The

sheet thickness t' is assumed sufficiently small so that the stresses do

not vary across each sheet.

If aE(= 1, 2) denote the principal stresses in the top and bottom

sheet respectively, the resultant forces and moments are

N= (•+ a ) t? M •=I(a" -a + ) h't' (5.3)

Evidently Eqs. (5. 3) can be solved for the four stresses aPh as linear

functions of the forces N and moments M P . It follows that any

p ,
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material yield condition which is piecewise linear in the stresses

will be piecewise linear in N and M . Therefore, it can be re-

presented as a convex polyhedron in a four dimensional generalized
stress space with axes N and M

p P
On the other hand, for a uniform shell of thickness h and yield

stress 4o, the stress resultants are

h/2 h/Z

N a~ dz aP zdz (5.4)

-h/2 -h/Z

At least in theory, Eqs. (5.4) can be solved for the stresses and sub-

stituted into the material yield condition to obtain the yield surface in

generalized stress space. Whether the material yield condition is

piecewise linear or not, the yield surface will be convex but will

not generally be a polyhedron.

We wish to investigate the relation btvtween the yield surface of the

uniform shell and the yield polyhedron of the sandwich shell. To this end

we first note that if a single force or single moment is acting and

produces yield, then its magnitude is

No =f2 0 t M0 = q0 h t

for the sandwich shell and

N0 = a0 h (1/4) a0h2

for the uniform shell.

The usual method of choosing the sandwich shell parameters

is so that ([7]

N0 No 0 - (5.5)



28

i. e.

O"t =•a 0h hfih (5.6)

Now, it is evident that the yield polyhedron is fully specified by its

vertices and that, regardless of the yield condition, each vertex is

specified by giving values of the four pure numbers NWN0, MJ10.

Therefore, if (5. 5) holds and if the same material yield condition is

used for the sandwich and uniform shells, all vertices of the yield

polyhedron will lie on the yield surface. Since the polyhedron and

yield surface are both convex, it follows that the, .......

lie inside the yield surface. Therefore, the yield polyhedron for the

sandwich shell defined by (5. 6) will provide a lower bound on the

yield-point load for a uniform shell with the same material yield

condition.

A different result is obtained if we visualize taking the uniform

shell, leaving its thickness unchanged, but compressing all of its

material into its top and bottom surfaces. Thus

h=h 0 t =cr 0 h (4.7)

whence

Io =No MD ;-N. (4.8)

For any state of stress this sandwich shell will be as strong as the

uniform shell in resisting moments. It follows that the resulting yield

polyhedron must lie outside of the yield surface. Therefore, the sand-

wich shell defined by (5.7) will provide an upper bound for a uniform

shell with the same material yield condition.

i,
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It is convenient to define dimensionless generalized stresses

in terms of the paramet ers of the uniform shell by

n N 0 IN 0 = (a 0 + ap ~)/(Zcr0 )

m•= M /Mo = (a7 - o0+)I(Zka0o) (5. 9)

where

k 1 for the shell of (5. 6) (5. 10)

k = *for the shell of (5.7)

The stresses can then be written in the form

*km

Substitution of (5. 11) into the yield condition will give a circumscrib-

ing polyhedron for k = j and an inscribing one for k = 1.

An alternative circumscribing polyhedron can be obtained

without reference to a sandwich shell. We observe that if the stresses

in a uniform shell must satisfy a set of linear inequalities of the

form Li (a /Pl0)-- 0, then the generalized stresses must satisfy

Li (n P)-5 0 Li (mP ):s0 (5. 12)

together with further inequalities which represent the interaction be-

tween force and moment. Since the yield surface is constrained by

(5. 12) as well as further inequalities, it foflows that the convex poly-

hedron (5. 12) must circumscribe the yield surface. We shall refer

to it as the limited interaction polyhedron.

For plane stress a3 = 0, Tiesca's yield condition (5. 1) reduces to

max [11, 1 az, I 1-/z I 1/0 .'1 (5. 13)



30

This must be satisfied by both the top and bottom sheets of the sandwich

shell. Therefore, it follows from (5. 11) with k = I, that

max[ In 1 + 1 mI•[, nl-n2 [ + ImI- m2[] = 1 (5. 14)

is a lower bound for any material yield condition with tensile yield stress
I

For the maximum reduced stress condition with a03 = 0 we obtain

max [ Ia, -½aI, ½IT+a 2 l/ = lSt , P= 1, Z;ua# (5. 15)

whence, in view of (5. 11) with k =j

max[In. -In I +a l m• -im l, IInl+n.I +• 1ml+m 21 = 1

(5.16)

The limited interaction polyhedron in this case is

max[In.-6n[ I -Lm-,I j[nl+n2 I, *Iml+m 2 [] =I

(5. 17)

Either of (5. 16) or (5. 17) provide upper bounds for any material yield

condition.

As discussed in [ 22] and [ 24] , a similar analysis in which the

roles of Tresca's and Hill's material conditions are essentially inter-

changed may be carried out for the case in which the single experimental

number is the shearing yield stress.



6. EXAMPLE: CYLINDRICAL SHELL

For an axially symmetrically loaded circular cylindrical shell

we choose the axial direction x and circumferential direction 9

as principal directions 1 and 2 respectively. According to the usual

assumptions of thin cylindrical shell theory, m 2 = me is a reaction

and can be eliminated from the problem. Further, if axial load is

applied only at the end of the shell, the axial stress nx= t is constant

along the shell and can be regarded as a parameter. Thus, we can

reduce the various polyhedra to polygons in an n9 = n, mx = m space.

We consider first the form of the Tresca polygon. The inequali-

ties implied by (5. 14) can be written

- l-t• ml t

S-(6. 1)
-l+t 1+

-l +n li+n

-1-n 1-n•mo< (6. 2)

-li+n-t+m 
I+n-t+m(.

-1-nn+t+m 1 -n+t+m

In (6. 2), the value of m0 is of no concern and it is necessary only to be

sure that each left-hand side is less than each right-hand side. Eliminating

the redundant and tautological members of the resulting set of 16 inequal-

ities plus the 4 inequalities of (4- 1) we obtain the 12 inequalities

-•n- +tl l+t (6S.3)-l lt s m l- l

!-.2+t :5 Zn~kms *Z+t

31Li
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Inequalities (6. 3) define a polyhedron in an n. m, t space which in

s-znmetric with respect to the m axis and the plane m a 0, and

which inscribes the actual yield surface when the tensile yield stress

is known. The specific polygons for positive constant t and positive

m are

n- +t nz - I +t

Z-t+2n

m=' I-t m= l-t (6.4)

n=1 n l

The heavy curves in Fig. 6 show typical polygons (6. 4).

A similar analysis may be made for the maximum reduced

stress polyhedron. Elimination of m. from (5. 16) leads to

-8+61 t 1 : 3m :5 8-61ti

-4 + 4t -5 2n --- 4 + 4t

-4 - 2t - 2t (6.5)

-12 + IOt' 12 + 1ott 8n 43m _

-12 - 2tf f 12 - zt

-8 + Zt : 4n*3m5 8 + Zt

I
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For an upper bound on the tension-test measured shell, we

supplement (6. 5) with the inequalities obtained from (5. 17)

to obtain the polygons

0:st-:s2 /3 2/3 St L I

Zn= - 2 +t 2n -4+4t

12- lOt + 8n 1'2 - lot +8n

3m =-4 3m=- 8 - 6t (6.6)

(12-Z2t + 8n ,12-Zt- 8n

Zn = Z+t 2n 4-Zt

I - t -- 4/3

Zn = - 4+4t

3m = 8 - 6t

Zn = 4-2t

shown by the light curves in Fig. 6.

The bounding yield curves for a cylindrical shell have been applied

to the problem of a cantilever shell under internal pressure [ 24] . Figure

7 shows the resulting bounds on the yield-point pressure as a function of

the dimensionless parameter

where A is the radius and 2H the shell thickness. Similar results when

the shearing yield stress is known are also given in (24]

L



7. LIMITATIONS AND EXTENSIONS

The aim of the preceding sections has been to give the theo-

retical background of a practical theory of plastic shells. Thus, we

have attempted neither to give a complete catalogue of available

problem solutions, nor to give the most general possible theory.

With regard to problem solutions, a representative selection and

extensive bibliography may be found in [ 10] .

Among the physically present physical concepts which have

elastic and plastic strains, the effect of strain-hardeningchanges in

stress distributions due to small geometry changes induced by the

loads, and nonlinearities due to finite strains. Hodge and his associates

[25, 26, 27, 28] have considered various simple problems in which

elastic strains and strain-hardening were included. In every case

investigated, a representative load-deformation curve had the qualita-

tive form shown in Fig. 8 [ 25] . Based upon these examples, it appears

reasonable to assume that structures made of real material exhibit

qualitatively different behavior depending upon whether the load is above

or below the yield-point load of the same structure made of an idealized

rigid/perfectly-plastic material. Thus, if the purpose of the investigation

is to determine only the load value at which this qualitative difference

occurs, the rigid/perfectly-plastic model considered herein will provide

a reasonable estimate for the desired information. Further, Figure 8

indicates that if more detailed information is desired for loads less than

34
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the yield-point load, it is reasonable to neglect strain-hardening and

consider an elastic/perfectly-plastic material. Finally, for information

at loads above the yield-point load, elastic strains are relatively un-

important and one may use a rigid/strain-hardening material as a model.

The situation with regard to small and large geometry changes

is less clear. It has been shown by Haythornthwaite [ 29] that the be-

havior of a beam whose ends are fully fixed as to both slope and

separation is quite different from one whose ends are clamped but

free to move towards each other under load. For the former,

even a small deformation of the order of half the beam height intro-

duces axial forces which substantially raise the load-carrying capacity

of the beam. Similar results for circular plates were found by Onat

and Haythornthwaite [ 30] .

The beam and circular plate problem have proved solvable

because of the fact that they deformed into easily characterized simple

shapes. For other shell problems, the initial velocity field at the

yield-point load predicts that elementary shell shapes such as spheres,

cones, or cylinders, deform into complex shapes which are not easily

characterized. Therefore, a general theory of the post-yield behavior

of shells must probably await a more general technique for determin-

ing the yield-point load. In view of the complexity of solutions for such

simple shapes as spheres or cones, it appears almost certain that any

general approach must be primarily numerical. A first step in this

direction has been taken by Onat and Lance [ 16] , for a shallow conical

shell, but it is not yet clear if their methods can be generalized.
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With regard to truly large deformations# the small-strain

theory presented herein is wholly inadequate. However, for very

thin shells, it does appear reasonable in this case to neglect bending

stresses entirely and construct a membrane theory of finite shell

deformation. This has been done by Salmon [ 3 11 for an initially

cylindrical shell. Obviously more work remains to be done in this

area also.



REFERENCES

1. M. N. Fialkow: Limit analysis of simply supported circular shell
roofs, J. Eng. Mech. Div. Proc. ASCE 84, 1706 (1958).

2. P. G. Hodge, Jr. and J. Panarelli; Plastic analysis of cylindrical
shells under pressure, end load, and torque, Proc. 8th Midw. Mech.
Conf. (Cleveland, Ohio, 1963), in press.

3. E. T. Onat and W. Prager: The influence of axial forces on the collapse
loads of frames, Proc. 1st Midw. Conf. Solid Mech. (Urbana, Illinois,
1953), pp 40-42, 9154.

4. E. T. Onat and W. Prager: Limit analysis of arches, J. Mech.
Phys. Solids 1, 77-89 (1953).

-6 W swas...4Th geaeis1 theary aof 1-iM
Congr. Appl. Mech. (Istanbul, 1952) Z, pp 65-7Z, 1956.

6. J. N. Goodier and P. G. Hodge, Jr.: "Elasticity - Plasticity,"
J. Wiley and Sons, Inc., New York, 1958.

7. P. G. Hodge, Jr.: "Plastic Analysis of Structures, " McGraw-Hill
Book Publ. Co., Inc., New York, 1959.

8. D. C. Drucker: Some implications of work hardening and ideal
plasticity, Q. Appl. Math. 7, 411-418 (1950).

9. D. C. Drucker: A more fundamental approach to plastic stress strain
relations, Proc. 1st U. S. Nat. Congr. Appl. Mech. (Chicago, Illinois,
1951), pp 487 - 491, 1953.

10. P. G. Hodge, Jr.: "Limit Analysis of Rotationally Symmetric Plates
and Shells," Prentice-Hall Publ. Co., Inc., Englewood Cliffs, New
Jersey, 1963.

11. E. T. Onat and W. Prager: Limit analysis of shells of revolution,
Proc. Roy. Netherlands Acad. Sci. B 57, 534-548 (1954).

1Z. P. G. Hodge, Jr.: The Mises yield condition for rotationally symnrnetric
shells, Q. Appl. Math. 18, 305-311 (1961).

13. H. G. Hopkins and A. J. Wang: Load carrying capacities for circular
plates of perfectly-plastic material with arbitrary yield condition,
J. Mech. Phys. Solids 3, 117-129 (1955).

14. P. G. Hodge, Jr. and A. Sawczuk: Comparison of yield conditions
for circular cylindrical shells, J. Franklin Inst. 269, 362 -374 (1960).

37



38

15. E. T. Onat: Plastic analysis of conical shells, 3. Eng. Mech. Div.,
Proc. ASCE 86, No. EM6, 2675 (1960).

16. R. H. Lance and E. T. Onat: Analysis of plastic conical shells,
3. Appl. Mech., in press.

17. P. G. Hodge, Jr. and R. Sankaranarayanan: Plastic interaction
curves for annular plates in tension and bending, J. Mech. Phys.
Solids 8, 153-160 (1960).

18. P. G. Hodge, Jr., A comparison of yield conditions in the theory
of plastic shells, "Problems of Continuum Mechanics" Soc. Ind.
Appl. Math., Philadelphia, 1961, pp 165-177, English edition
(pp 458-470, Russian edition).

19. R. von Mises: Mechanik der plastischen Forrnmnderung von Kristallen,
Z. angew. Math. Mech. 8, 161-185 (1928).

20. R. Hill: On the inhomogeneous deformation of a plastic lamina in
a compression test, Phil. Mag. 41, 733-744 (1950).

2.D. D. Ivlev: On the development of a theory of ideal plasticity,
Prik. Mat. Mekh. 22, 850-855 (1958).

22. R. Haythornthwaite: Range of yield condition ideal plasticity.
J. Eng. Mech. Div., Proc. ASCE 87, No. EM 6 (1961).

23. H. Tresca: Memoire sur l'ecoulement des corps solides, Mgm.
pr~s. par div. say. 18, 733-799 (1868).

24. P. G. Hodge, Jr.: Piecewise-linear bounds on the yield-point
load of shells, J. Mech. Phys. Solids 11, 1-12 (1963).

25. P. G. Hodge, Jr.: The practical significance of limit analysis,
3. Aero/Sp. Sci. 25, 724-725 (;958).

26. P. G. Hodge, Jr.: Boundary value problems in plasticity, "Plasticity"
ed. by E. H. Lee and P. S. Symonds, Pergammon Press, Inc.* New
York, 1960, pp 297-337.

27. P. G. Hodge, Jr. and F. A. Romano: Deformations of an elastic-
plastic cylindrical shell with linear strain hardening, J. Mech. Phys.
Solids 4, 145-161 (1956).

28. P. G. Hodge, Jr. and M. Balaban: Elastic-plastic analysis of a
rotating cylinder, Int. J. Mech. Sci. 4, 465-476 (1962).

29. R. M. Haythornthawite: Beams with full end fixity. Engineering 183,
110-112 (1957).

30. E. T. Onat and R. M. Haythornthwaite: Load carrying capacity of
circular plates at large deflection, 3. Appl. Mech. 23, 49-55 (1956).

31. M A. Salmon: Plastic instability of cylindrical shells with rigid end
closures, J. Appl. Mech., in press.



,'-- • -I

CA

VV

SI.- .bo_

F I

-I-

4AI

S" [rTrrrr rrl'-
•4 '

*• • U)

,• N'4



Fe,K]

Figure 2. Yield curve for rectangular beam



Cr~m

RII

"--r 
3

S~F 
igure 3. Sh ell elem ent



Sheao-

M.. -----. rducTrese hexagon

Figure 5. Piecewise linear yield conditions



g

a S
* S
* a
14 1.
44 44
* S

* S

* 5

4*) 44

U - Ii
_____ ZR

-- I. 1.
o 6a. �
0. �

C

4
U

- I
U
S.
0

& C - -
U � IS
44 44 44

0

114



.-4

_ _ _ _ _ _ _ _ Q(4

0 -0

WL

0 -j

ow w 4)



44n

00 b0

I I



amUefJnI L15 Fu01 •UI•.A•SII 1UCAZL ImumOR ISO gN oam" TAUs n 06"2. .

Chiot otf Navl essaeb Comading Offier Dirt , Nateal. zlaovratev
Department of th Navy Isgineer sseeame Development lbwakteer ew Naval suipa
Wasin•t•m•5,D... Fort elvoir. VilaLea (1) rek-b l, it Nowfkl
AWtn Ce 439 (2)

code 463 (l) Office ot the Chief of Ordommee Cmmading Offieer a Ureeter
Department of the Arn. S. Nava l *otroc a

Commanding; Offleer Washington 25. D. C. San Diego 520 oalfu t"e "aniOffice of Navel Memrech Attn. Resarch & Natral• e • as me
Brench Offioe (Ord AD • iy.) (1) ofie5rin.Cume"95 Sumer Street c. a. Naval Civil
baoton 10, Haeamobamettc (1) Office of the Chief 1i4pal Officer uad oalustlm laboratory

Department of the Army Naval Cematruetiuc Battalico Coate,
Comcndi•n Offioer Washington 25, D. C. Part Baan, California (2)
Office of Naval eseearch Attn: tlueoorin & ?ehbieale,
Branch Office Division (1) Director. Naval Air Naperiast Statioa
John Crerar Lihbary Building Naval Air Material Cente,
56 £. Rendolph Street Commndig Office, Nava Bme
Chicago 11, Illinois (1) Watertown Arsenal Philadelphia 12. Pennsylvania

Watertown, Maseachueetts Atta: Materiale Laboratory (1)
Commanding Officer Attn. Laboratory Division (1) Structures Laboratory (1)
Office of Naval Reaearch
Branch Office Co nding Office, Otticerla-charge
346 Broadway Frankford Areonal
New York 13, N. Y. (1) Bridocburg Station edveter Nrplooio Naeaeal DSvhip

Philadelphia 37, Pennsylvania Portomouth, VirginiaCommanding Officer Attni Laboratory Divisica (1) Attn: Dr. A. H. geil (2)
Office of Naval Research
rnch Office Office of Ordnance Rsaerch Commader, U. S. Naval Proving around

1030 4. Green Street 212? Myrtly Drive Dogsm, Virginia (1)
Pasadena, California (1) Duke Station

Durham, North Carolina Speritenent Naval Gun Ft
Commanding Officer Attn: Division of Agiaeerng Wshringendton 2 N'D.a . (a1
Officer of Naval Research Science5 (1)
Branch Office Commader, Naval Ordnance Test Station
1000 Geary Street Co nding OfficerCalifo
2an Francisco, California (1) Squier Signal Laboratory Attne: Physicn DLvsion (l

Fort Monmouth, New Jersy MechaAic Branch (1)Comaanding Officer Attn, Components & Materials
Office of Naval Rvnsarch Branch (C) Commander Naval Ordnance Teet Statioa
Navy nlOOPlost Poet Office Underwate, Ordnance Divisioa
Ne, York, N. Y. (25) Chief of Naval Operations 3202 S. Foothill Boulesard

Department of the Navy
A ttn rtuctures Division (2)Naval Research Laboratory Attn. Op 37 (1)

asehington 25, D. C.
Attn: Tech Into Officer (6) Comeeandant, Marine Corpa Commanding Officer and Director

Code 6200 (1) Hkdquarters, U.S. Marine Corps Naval ýkýginooring Zxperiment Stetion
Code 6205 (1) ,iaehington 6. D.C. (1) Annapolis, Maryland (1)
Code 6250 (1)
Code 626 (1) Chiaf, B.urea of Ships Superintendent, Navel loatgradu.te 3chool

Department of the NBy Monterey, California (1)Arned Services Technical Information daalhngton 25, D.C.
Agency Attn: Code 312 (2) Comandant, Marine Corps Schools

Document Service Center Code 376 (1) ,uaantico, Virginia
Arlington Hall Station Code 377 (1) Attn: Director, Marine Corps
Arlington 12. Virginia (10) Code 420 (1) evelopment Center (1)

C.oi. 443 (.?) Commanding GenoralOffice of Technical Services Code 442 (2) U.S. Air Force
Department of Commerce Waohinston 25, D.C-
,dashington 25, 0. C. (1) Chif, fBureau of Aar.•nautica Attn Reaorch and ievelopet Divisioa (1)

Dimertment of the NavyOffice of the 5ecretary of Defenoe "a•,.gton 25, D.C. Commnder, WAOD
Research and Development Division Attn; AV-34 (1) Wright-Patt eroon Air Forde Beae
rhe Pentagon AD-2 (1) Dayton, Ohio
Jashington 25, D. C. RS-7 41) Attn: A1W4E (l)
Attn: Technical Library 1) oR-8 (1) WID. (21)

Chief
Areed Forces Special Weapona Project Chief, Bureau of Ordnance Commender. Air Material Command
The Fentagon Department of the Navy Wright-Pattjraon Air Force BaSe
daehington 25. D. C. Washington 25, D.C- Dayton, Ohio
Attn: Technical Information Attn. Ad3 (I) Ats: WC0LR (2)

Division (2) Re (1) structures Div. (1)
Weapons Sffecte Division (1) Ren (1)
Special Field Projects (1) ReS5 (l) Comemader, U.S. Air Force Institute
Blast and Shock Branch (1) Reel (1) of Technology

Rea (1) Wripht-I'attersou Air Force Onea
Office of the Secretary of the Arm Dayton, Ohio
The Pentagon Chief, Bureau of Yards and Dock Attn; Chief,Applied Mechanics
Washington 25, D. C. Department of the Navy Group (1)
Attn. Army Library (l) Washington 25, D.C. Director of Intelign•e

Chief of Staff D-202 (1) Headquarters, W.S Air Force
Department of the Army D-202.3 (1) Weahington 25, D.C.
Washington 25, D. C. D- () Attn: P.V. Breach (Air Targets
Attni Development Branch (AD Div) (1) D-QU (l) Division) (1)

Baaearch Brawnh (aID Div) (1) D-410C (1)
Special Weapons Br.(CBD Div) (1) D-J44 (1) Comde4r, Air Force Office of

0-500 (1) Scientific •oesarch
Office of the Chief of nginerso Wahinagto R5, D.C.
Department of the Army Oomeadiag Officer and Director Attn: Mechanics Division (l)
Washington 25, D. C. David Taylor Model Basis Commending officer
Attn. 1M3-HL LiN. Br., Ad., waskington 7, D.C. U d• Ot9e

Ser. Div. (1) Attn$ Code 1140 (1) UWama
'SlWB h~g, Div. Civil 600 (1) Kirtland Air Fesoe lam

works (s) 700 (1) Albqueu, N00
24-0 Prot. Constr. Mr., 720 (1) Att. Oede 20 Cl)

(1ei.,i. C) 7Cl() (Dr. J.N.Breamss).m-st r 73 (2) U, a.S .fie ergfi~ commision03.A tuc r. -Id 70(2) Washington as, D.C.
Doiv. Vi.. Cometr.(l) At.iretor of .o.

ar-NB Special 1W.r C.mader Attn. ireo0e of IeoeeeDh(2)
*Bg.av Div. (1) U.S. Navel Ord-* Laboratory Director, National ureau of Stuaded.

Inite Oak, Neryla•d
Attn, Teoeomom l Library (2) NAmti Diitso t, D.O.TehiOs Avluatime Attel Bise of Mes (I)

poep. (1) Egsonasei kNech ee Sect. (l)
Aircraft Streete•e (1)



Professor D.C. kAw~e. Gairms Mr. 5.Ly.boqu

Goeinadst. V.a.Csaes 3emyd Slo hem boead Counse Obemetstru p"e 06
1300 d. Strt, W.i. Apro"videmee U 3ud0 Ceadkl) ftldg ita ITFeeelS"& (1)

Atts: Chief, ToItea and t i~ e.
Development Medal. (I) prto 40 & "C 'aim pofessor Paul rad

Department Of Aareeautical am.68301DBt t
U.S. NaritirO Admautetretimn A'ed9) University Suee my 4. c1eos (1)
General Administration Office 014g. latayette. Winedsa (1)
daeb'W"te 25, ",C praeeeeoe Joseph Naria. good
"'tt.. Chief. Division of Prfso .nw Ibyu~art t of AngineeeinI N~aO

Preliminary Design (l) Depertoeet of heokmamlal &a. ~
3tanford UnieateIty t ooyvsattealoiy

National Advisory Committee fo Stanford. Californai (1) University ftrk, pesauylveasa (l)

Aeronautics I'hwerI d o~rfeseor A.D. Niedlin
152 H. ies, M.e Prfessori L.A.eisa Go tatmic.DpitSSo 11 ele~

4aslingCM 2 5. D.C. aaata koim sainDprmnofcvliooo"

A&o od ,dSraa I 2 Univirsity of Minnesota Columbia University
Nta aemdSrutrsDv 2 inneapolis. Minnesota 632 W. 12" StrOet

Ijiteetor, Langley Aeronautical Lab. Mr utnGl~ I*ýj.New York 27. Maw York (1

Att,,:y noicds Di,-ivilom Southwest Nee~arcb Institute Professor Paul N. NsAbdi
At:SrcueDiiin G)8500 Culeerm laed Department of 10gieaoria NOChaaiee

ir~retor. Forest Iroduto Lab. lea Antonio, tame (1) University of Cailfrsav

Kadieon. Aiscunoin (1) Professor J..30w Bror4 California

Civil Aeronautics '.odaisitwation Dotof Mecaenical And. Profaoear 411 erk. u

Depirtevnt of Commerce Stan=ord. ivarsioynDepartmentit f of finoriada NN-

Waebingtoa. 4., D.C. Stnfrd ClioriaU illeit oflorida (1

%ttn; Chief. Aircraft dul. Div. (1) Foo~rWJ al(m"vle lrd 1

cbief. Airfim@ & St. ar.Wl oepartont ofJ Mavil Professaor N.M. Nemo"k. Need

Na.tional Acvdeey atof =0 (ciene L ~rtaitj of Ilinois D eportment of Civil Mogiaeeria.J

.101l Constitution Ave. Amen.s, Illinois (W alveteity of Illinois

Attu. Technical Director, Comitt,, ,oomo .eHrrotm o
ae .;i.p.I .ltructur-l Lost M (1) I-o isrL.Mereta. ed r eosr L Crowms

,:xcutive locrat ro * Committee IP tr o.f Aosouia A daJAOri1A Deorktemo of Mechanioal Inginvesked

onUnaes srZ; Ti)Cinoiinnti 21. Ohio (1) CIAW46 3 ee VA~beetto (1)

Legisl~tiv* Reference Service Professor N. Netemyl brmo ihlsFmo
Library of Congress The Ticbmologicsl Iestitute d"ofeesrin Niebola leeOmeNR
4aahindton 25. D.C- Northwe..tirmn iveriwaty Prattoia Ins ituea earst

Attn or ".eac 9vnstn, lliois (1)Brokelyn 5, New York (l)

Irofeesor Lys.n S. Boedle erofaeeor khIilip (). Hodge. 4.r. Phoofuser iria i1hillipm
Fritz £aSimeering Laboratory Dcepartment of MecahnicsDeatntoCil imood
Lahigh Univiraity filia.1e In -titate of Vechnolody 15epartewut ofCtrleet ners
Betkhleham. 1Penneylv~nla (1) Chicago 16, lllinois(l) Tale university

f'rofoaaor U.L. Bispliaghoff I'rofeeeor N.J. Mor ll.w Naveecoemmcticut W1

Departmeent of Aeramauticel haitneering Division of Aeronautical 41giaeering Profeeeor W. Prager
kassenhueette Institute of ?oknoloa 3teaford Us-varelty L. lattbi" e BALI" vm. Profeeeeer
Ceabridde 39. Measachueetts (1) Stamford, California 0l UanViversity

prof eueor H.N. Dutchk Professor N.N. Noypanen. IProvdec Ia. bode Ilelad (1)

Dep~rtaeat of Civil dadiseeriag Department of Mechanics P-rofessor S. noiaeeer
Columbia Ulnivereity Maeaemelor kilytacbmic institute Department of mathematics
New fork 27, New fork (1) boy, New York (1) Meeassahuette Inetitute of Techeolody

Prof-,ssor B.A. Doley Professor J1. X e 3i

Departeent of Civil dogineeriod Dept. of Aaromoutioal dugineering p'rofiesor N.A. smenaky
Columbia Uc.iv ereity sAd Applied Nohanies Departmeat of Meehamics
New York 27, New Toft (1) polyteehmia Imatitute of ko~klya beaael~e polytochato Institute

333 Jay StreetroNo or 1
Profaseor Sugene J, Brunell, Jr. Arocklys 1, New fork (l) taNwYr 1
Depurteant of Aeroneautical Qmgisoerirq Prof eajo B.W. Saffelfr
Princoton University Prof ,eeor H. KOIdey uepartmeat of Meabeatel Agisee~ring
Princi,t n, New Jersey (1) Division of doitnering New fork University

Mbows University nives, ity deighte
Dr. Jobs F. Ifbobts, beamer providence 12. No ua l ,new Tork, N.Y. (1)
Casstruoetiom Sesioee Moaeas~k
Stanford Research Institute Vt. .N.M Koopeen, Secretary koe~J tloe
820 Nieolam street lelding Reeaeroh Cnomall of th Dpartfenteof Civi atgaigrif

South Pasadena, California (1) SAjGjsejmig 7bAuMdtiaa University of Illinois
29 W, 390 street UbnIlni 1

profeeeraf . bodismek Nj. fork 1-1, NeW Yort (2)Uraa ineC)
Department of Mock. No'-mea Profeesor ati .torab.,rg
Seboel of AWpiOA AVIONcee Profeesor NL. lasabfin Division of Applied Mathematics
lare"vr University Depertuent of Teoretical & Applied Meet1 * hew Univereity
Cambidge 38, beemebaemett Cl) ivermity of Ill1inoi Provdyaes 12, aMode blend (1)

Urbsma, Illinois(1
profeesor DyF. Carrier
Piers* "1i4 Sa--"s Saivreity Professo A.4.voleetoo
Camfridg .~ Neaeaskeeiaa ()Professor SmilaLes., Director' Department of Civil digiemerieg

prefeesee3.i.nsist !g IS~at5Ll 5 University of Illiunoi
ftt~ppJ.. OVok..toUrbeam, Ilinoise (1)

Copertaem of CIVUl AWL-ori" Minneapolis iS, Niammeemt (1)
Colorado State Iivepsity Ella. Ire e, Du Tomm
yeet Collins. Coloepab pr tvsaofessr S.ei b emleTale bilvermity

prfeeeer wiser, 2. eS 00614 arm9oreit ewHvmOeeeiw
isobee of aw. no aft~tW e proptAwee. Ia, as Soual Wl projet Starf (10)
Nomuad fivereit
ONiAgtaS 1,.0. C)ppotmoeer feerge M. Iee**

13eeo of 350or yawr feter distuibution (10)
bofoeseF ~ ~ ~ Nugouc bieSlraias semle eyteebeie leetitute

Deportese of CO tal bimoletM Iray Now Ienk(1
"Loest" ftivee~isl
in W. Lap &SU50 Mr. N.N.Wesee
oew teak "Y, %W fark (1 etbetneemarel Leaitete

"a90 Calgais eDo
..am hatestol. tenee


